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A scheme for accurate quantification of "H spectra is presented.
The method uses maximum-phase finite impulse response (FIR)
filters for solvent suppression and an iterative nonlinear least-
squares (NLLS) algorithm for parameter estimation. The estima-
tion algorithm takes the filter influence on the metabolites of
interest into account and can thereby correctly incorporate a large
variety of prior knowledge into the estimation phase. The FIR
filter is designed in such a way that no distortion of the important
initial samples is introduced. The FIR filter method is compared
numerically with the HSVD method for water signal removal in a
number of examples. The results show that the FIR method, using
an automatic filter design scheme, slightly outperforms the HSVD
method in most cases. The good performance and ease of use of
the FIR filter method combined with its low computational com-
plexity motivate the use of the proposed method. © 1999 Academic Press

Key Words: magnetic resonance spectroscopy data quantifica-
tion; finite impulse response filter; solvent suppression; AMARES;
nonlinear least squares.

INTRODUCTION

with a circular Gaussian distribution. The caretyomdicates
that this quantity represents the model function rather than tt
actual measurements. The time domain estimation methods ¢
be divided into two classes. On the one hand, there are tl
so-called black-box methods. Among this class of methods a
techniques based on Kumaresan and Tufts’ linear predictic
(LP) method 1) combined with the singular value decompo-
sition (SVD) @). Kung’s state-space approacB) combined
with SVD and least squares (LS) [called HSVE)](is a more
efficient and more accurate alternative to the LP method as
circumvents the polynomial rooting and root selection. Othe
variants of the state-space algorithms have been recently pi
posed in which some forms of prior knowledge can be incor
porated 5-7), but the limitations to the imposition of prior
knowledge about model function parameters are inherent
this type of method. An alternative method which also avoid:
polynomial rooting is the matrix pencil method as described ii
(8) and references therein. On the other hand, interactive met
ods exist that are iterative, require user involvement, and allo
inclusion of prior knowledge. The algorithms minimize the

Accurate and efficient quantification of magnetic resonandéference between the nonlinear model function and the dat

spectroscopy (MRS) signals is the essential step prior to thkis approach leads to maximum likelihood (ML) paramete
conversion of the estimated signal parameters into biochemieatimates if the underlying assumptions concerning the mod
quantities (concentration, pH). MRS signals are characteriziehction and noise distribution are satisfied. VARPRPand the
by a low signal-to-noise ratio (SNR) and simple signal pramore recent AMARESI0) are examples of this type of method.
cessing techniques are in general not adequate. Therefore i this paper we focus our attention dH spectra. In the
number of more advanced techniques based on a time dormsisence of water suppression techniques the signal contrik
model function have been developed. The function often usgoh of the water can have a magnitude that i8 tb010" larger
to model theN measured data points is the sum of exponethan the magnitude of the metabolites of interest, which lie o
tially damped complex sinusoids, the broad “tails” of the water resonance. In practice carefull
designed measurement sequences are used to suppress

K , _ ’ water signal prior to data acquisition. It is, however, impossible
y(n) = 9(n) + w(n) = 3 aelte*2mnt 4 w(n), to completely eliminate the water signal fram vivo signals
k=1 without affecting the metabolites of interest over a relatively

wide frequency range. Therefore a water peak remains prese
in the spectra that cannot be described by an analytical fun
wherej = V-1, a, is the amplitude ¢, the phaseq, the tion, mainly because of magnetic field inhomogeneity an
damping, and, the frequency of th&th sinusoidk = 1, ..., lineshape distortions caused by suppression techniques. Sir
K); At is the sampling interval; angl is complex white noise no model function is available for the water signal, a methoc

n=0,...,N—-1, [1]
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e.g., like AMARES, cannot be used without first removing the The paper is organized as follows. In the next section the FI
disturbing peak. Note that the problem is also present if ofiter theory is presented and desirable properties of the filter a
uses a frequency domain quantification method. In that cgsanted out. The filter influence on the parameters is studied at
care has to be taken of the tilted baseline caused by the choice of the iterative nonlinear least-squares (NLLS) algc
presence of the water resonance. As a consequence, irrespdon is motivated. The filter design aspects are covered and
tive of the method used for the actual quantification of thesaitomatic filter design scheme is proposed. In the HSVD sectic
proton spectra, a preprocessing step is necessary to removdtibeHSVD method is briefly discussed and the water remov:
unwanted water contribution. It is obvious that this preprocegz:ocedure described. The numerical examples section contains
ing step should influence the final parameter estimates of #densive numerical study of the parameter estimation accurac
metabolites of interest as little as possible. Furthermore tb&the relevant metabolites with respect to the choice of both tt
procedure must be easy to use and have a low computatidifidr and HSVD parameters as well as a comparison of th
complexity since in applications such as spectroscopic imagiogmputational complexity of the methods. Finally, in the las
a large number of spectra have to be processed. section, we formulate the main conclusions.

Many preprocessing techniques have already been developed.
Some of these methods estimate the water signal part and ti#ANTIFICATION OF ‘H SPECTRA USING MAXIMUM-
subtract it from the original signal. Various methods for obtaining PHASE FIR FILTERS FOR SOLVENT SUPPRESSION
the estimate of the water contribution have been proposetilin ( .
a low-pass convolution [finite impulse response (FIR) filter] i§'R Filter Theory
used to obtain the water peak estimate by suppressing all the\ FIR filter is defined by the convolution
high-frequency contents (including the metabolite peaks) of the

signal. Variants on the method proposedlift) (have been devel- Mot
oped to alleviate distortions. An overview and discussion of these ~ ¥1(M) = 2 hpyy(n—m), n=0,... ,N-1, [2]
types of methods can be found ih2f. Another example in the m=0

same context is the HSVD method described 18) ([or the
similar TLS-based method used it¥}] where HSVD is used to Where d}q o . u-1 are the constant (possibly complex) filter
model the water region by a sum of damped complex expondigefficients [see, e.g.19)]. A problem with the definition in Eqg.
tials. A conceptually different approach is to suppress the walétis that the sampleg(n) for n < 0 are not available for filtering.
part of the Signa' by app|y|ng filters or convolution technique-ghis is norma"y solved by a.SSUming that the Signal iS zero outsic
directly to the signal. Examples using that approach can be fouHtg time window [i.e.y(n) = 0 for n < 0] or assuming a cyclic
e.g., in (L5, 18. In (17) the baseline caused by the presence of tif¢gnal [i.e.,y(n) = y(N + n) for n < 0]. Either of these assump-
water peak is approximated and removed from the Spectrum WH!@S will lead to a distortion of the firsil — 1 SampleS of the filter
the frequency region around the center of the water peak is repla@Put which therefore should be discarded. Let
by random noise. In1@) a technique based on SVD is presented.

A general comment on these filter-related papers is the lack ~ x(n) = ae/%e-atizrndt | =1 K,
of a satisfactory discussion of the design of the proposed filter.
Moreover, none of the published papers discuss the influenfgnhote the individual exponentially damped complex sinu

of the used techniques on the parameter estimates of §ufds. Filtering the MRS signal model in Eq. [1] and discarding
metabolites of interest. The methods presented in the literatiie firstM — 1 samples yield

are mostly evaluated based only on a visual inspection of the
filtered signal. In this paper we take a different approach. We

M-1
first explain how to design a maximum-phase FIR filter which N _ are _
is ideal in the sense that, contrary to the procedures discussed B (m) = zo Mny(n = m+M-=1)
in (12 and references therein, the filtered signal does not
include any distorted samples and the loss of signal energy is M-1
minimized. To automate the procedure and to increase the = E ho(X;(n—m+M — 1)
reproducibility of the method, we propose an automatic filter m=0

design procedure based on statistical arguments related to the
noise prewhitening interpretation of the filter. In the parameter
estimation phase we explicitly take the effect of the filter into o x(h=m+M-1))
account, resulting in parameter estimates that lie close to what
theoretically can be expected. We also discuss the influence of
the filter design parameters on the estimates of the relevant K
metabolites and we compare the new method with the often- = > hbx(n), n=0,...,N—M, [3]
used HSVD water removal method. k=1

+X(h—m+M-—-1)

= hb,yx;(n) + hb,x,(n) + - - -+ hbx«(n)
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where where redl) and imag-) denote the real and imaginary parts of
(+), respectively. Finally, the frequency-dependent time dela
h A (h - hy) (in number of samples) is equivalent to the filter group delay
Mt 0 Gd(f):
and do(f
Gd(f) = %.
b, é (1e(*ak+127fk)AI .. _e(—awjzﬂfk)(M—l)m)T_

A suitable filter type is found by first studying the properties of
From Eq. [3] it is seen that the filtered NMR signal consists dhe so-called linear-phase filter [see, e.d9). This type of
the original damped sinusoids (same frequency and dampififr is characterized by its phase response which is a line:
altered by a complex scaldmb,. Thus the filter coefficients function of the frequency. The linear dependency implies the
{hu} moo.....w_1 Can be chosen to suppress certain peaks (i.the filter has a group delay that is equal to a constant (i.e
make|hb,| = 0) while not suppressing others (i.e., makb,| independent of the frequency). The constant group dele
= 1). The filter (or convolution) methods are often believed tequals a pure time delay of the filtered signal. The time dela
have difficulties in removing the frequency domain “tail” ofis equal to half the filter length [i.e.M — 1)/2 samples]. This
peaks without affecting peaks lying on this tail. This misunmeans thatNl — 1)/2 information-carrying samples are lost
derstanding comes from the well-established fact that tirséen the firstM — 1 samples of the filtered signal are
domain convolution is equal to frequency domain multiplicaﬂiscarded. It is desirable to use a filter with a time delay eque
tion. It is, however, usually forgotten that this is not exactljo the filter length (i.e.M — 1 samples). Such a filter is in
true unless the signal is cyclic or identically zero outside ttgeneral not exactly realizable. Here we propose use of
actual time window [see, e.g12, 20]. The actual effect of the So-called maximum-phase filter which has the largest possib
filtering procedure in the frequency domain can be examin@goup delay for a given magnitude response [see, €lg)]. (
by taking the Fourier transform (FT) of the filtered signalhis kind of filter is characterized by a phase response that
model in Eq. [3], a nonlinear function of the frequency, leading to a nonconstat
group delay. A maximum-phase filter has by definition all its
K zeroes of the filter coefficient polynomial outside the unit
F{§,(n)} A ¥, (f) = S hbX(f) [4] _C|rcle. AImgar-phase fllte_r can therefore_ easily be transforme
into a maximum-phase filter by reflecting the zeroes of th
filter coefficient polynomial outside the unit circle. Note that
Gthis operation does not change the magnitude response of 1

k=1

where X, (f) is the FT of the individual damped sinusoi]c
(so-called Lorentzian). It is thereby clear that the broad pealgger‘ . . , . .

representing the exponentially damped sinusoids includi The prope_zrtles of the degcrlbed f||_ter types wil _be clarifiec
their broad “tails,” can be suppressed individually [see alst a ngrr]nﬁlrlcal eé(amlvﬁ)le_ déslplaygd r:n Fig. 1. A !Inear-pha_\St
(12)]. The same result cannot be obtained by simple operatio er wit |te_r orderivi = vl an the corresponding maxi-
directly in the frequency domain. mum-phase filter are studied. In the top left, the magnitud

A suitable filter can be proposed from analyzing propertiégsloo_nseS of the filters (both magnitude responses are equ
of the filter frequency responde( f) defined by are displayed. The phase responses of the filters are display
in the top right. The linear-phase filter has a phase respon

A - that varies linearly with frequency while the maximum-phase
H(f) = hg(f), fe[-0.5,0.9, filter has a phase response with a larger phase delay which

varying nonlinearly with frequency. The bottom left displays

where f denotes the normalized frequency (sampling frehe group delay of the two filters. It can be seen that the

quency= 1), andg(f) is the Fourier vector: linear-phase delays the signal exactly 30 samples for all fre
guencies. For the maximum-phase filter the time delay is clos
g(f) A (1ei27 . . . gizniM-1yT to 60 in the passband and varies slightly as a function of th

frequency. Finally in the bottom right the filter coefficients

I S i.e., the impulse responses) are displayed. The figure cleatr
The frequency-dependent amplification of the filter is given byﬂ‘%ows thatﬁhe Iinearr)-phase) filter C(E)ef%/cients aregsymmetri

magnitude responséH(f)|. Second, the frequency-dependen?

: , while the maximum-phase filter has most of its energy in the
phase delay is equal to the phase respai3g defined as last coefficients. These are typical properties of the impuls

) responses of the respective filters [see, el)](
b(f) = tanl<|maqH(f))> In Fig. 2 the filters described above are applied to a simt
rea(H(f)) ) lated *H MRS signal. The exact nature of the signal is de-
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FIG. 1. Filter characteristics of linear-phase and maximum-phase FIR filters. Top left: Magnitude response. Top right: Phase response. Bottom left
delay. Bottom right: Filter coefficients (Impulse response).

scribed under Numerical Examples and for our purposes h@tayed after applying the linear-phase filter and discarding 3
it is sufficient to recognize the large water peak, located arouafithe distorted samples in the beginning of the signal. Th
0 Hz, that we wish to suppress and the five metabolite peaksrefmaining distorted samples give rise to the broad hump in tf
interest at higher frequencies. In Fig. 2a the magnitude sp@ater peak region. Note that the filtered spectrum can n
trum of the signal and a normalized magnitude response of fbager be explained using the convolution theorem. In Fig. 2
filter are displayed. Figure 2b displays the magnitude spectrihe magnitude spectrum of the linear-phase-filtered signal wit
of the linear-phase filtered signal applied as in Eq. [2] withoaill distorted samples discarded is displayed. The spectru
discarding the initiaM — 1 distorted samples. This exampleshows that there is a perfect suppression of the water pe
is interesting since it shows that the spectrum of the filteréacluding the large tails as was predicted by the above discu
signal is nicely explained by the convolution theorem (i.e., theon and the result in Eq. [3]. In Fig. 2e the result from
resulting spectrum is exactly given by the multiplication of thapplying the corresponding maximum-phase filter and discar
signal spectrum and the magnitude response of the filter).ihg all the distorted samples is displayed. Also here the wate
Fig. 2c the magnitude spectrum of the filtered signal is dipeak is perfectly removed. The difference between the two la
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FIG. 2. lllustration of distortions introduced by applying a FIR filter. (a) Magnitude spectrunHdfiRS signal and normalized magnitude response of
61th-order FIR filter. (b) Magnitude spectrum of linear-phase filtered signal without discarding distorted samples. (c) Magnitude spectruptedméhered
signal discarding 30 distorted samples. (d) Magnitude spectrum of linear-phase filtered signal with all distorted samples discarded. (e)ddagmiiodef
maximum-phase filtered signal with all distorted samples discarded.

spectra shows the influence of the different group delays of thart of the signal. The maximum-phase filter has a group dele
filters. The 30-sample group delay of the linear-phase filtelose to 60 for frequencies in the passband and therefore the
leads to a loss of 30 signal samples which contain an importaspractically no loss of the initial high-amplitude samples of



194 SUNDIN ET AL.

b “ e of—m- e P
| [ i 3
e A R P T S [
1) { |
=B i = i et e s A "A.'_I |||'_""¥.J'_'_ S e e -5 [
IIII| II. }
14 l
mo-10 - f L' o-10 | ! [
= J Z
1
= b = r
£ &=
-15 ] A A5 |
| [ —  a=0 — a=0
a=0.01 s a=0.01
b - —-  «a=0.02 i a=0.02
-20 ! ’ -20 ‘
|
-25 L |.‘ L | -25 | |
-0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5

Mormalized Frequency fk (Hz) Mormalized Frequency fk (Hz)

FIG. 3. Magnitude ofhb, term as a function of normalized frequency (sampling frequency) for different damping coefficienta. Left: 61-tap,
linear-phase FIR filter. Right: 61-tap, maximum-phase FIR filter.

the signal. This can be seen from the higher metabolite pefdter influences the different peaks individually. Thereby it is
amplitudes in the maximum-phase-filtered spectrum comparngassible to suppress entire peaks, including the frequen
with the linear-phase-filtered spectrum. domain “tails,” while not influencing other peaks provided all
The importance of the large group delay of the maximunalistorted samples are discarded. The resulting signal is und
phase filter can also be studied using the result derived in Egrted in the sense that the filtered signal is exactly describe
[3]. It is seen that théb, term gives a measure of the effect oby the relation in Eq. [3]. Note that this property is not
the filter time delay when filtering damped sinusoids andependent on the type of filter used. The actual choice of filte
discarding all the distorted samples. In Fig. 3 the loss of SNgpe becomes important if you study the signal samples lo:
as a function of the damping of the peaks is displayed for thehen theM — 1 distorted samples of the filtered signal are
linear-phase filter and the maximum-phase filter used abowdéscarded. The high group delay of the maximum-phase filte
The magnitude response of the linear-phase FIR filter is disas seen to minimize this loss. The SNR gain compared wit
played on the left-hand side together with the values of thesing a linear-phase filter can be substantial.
|hb,| term as a function of the frequency for two different As a final comment we want to point out that the propose
damping coefficients. The dampings and frequencies are giyeocedure is exactly equivalent to using a minimum-phas
in normalized units (sampling frequeney 1). It is seen that filter, filtering backward in time, and discarding the lddt
for a damping of 0.01 (corresponding to 10 Hz for 1-kHsamples. This can be understood from the fact that the min
sampling frequency) the SNR loss is close to 3 dB for thmum-phase filter has all its zeros of the filter coefficient poly-
linear-phase filter. The corresponding figures for the maxiomial inside the unit circle and can be obtained by reversin
mum-phase filter are found on the right-hand side and it is settie order of the maximum-phase filter coefficients [see, e.g
that there is practically no involuntary suppression of th@9)]. The common use of minimum-phase filters and the
metabolite peaks except for some effects close to the stop bamxdsting design algorithm for such filters are the reasons fc
region. The advantage of the use of maximum-phase filters adroosing to discuss minimum-phase filters under Filter Desig
also be understood in the following way. Note that the
vector_ is equal to the Four_ier vectof f) for sinusqids_without Parameter Estimation
damping (i.e.« = 0). The influence of the damping is that the
magnitude response is weighted elementwise by the dampe&rom the filtered signaly; (n), parameter estimates can be
exponentials irb,: (1e " - - - e ™ YT The influence of obtained using any of the standard estimation methods. This
the weighting will be minimized if the filter has most of itspossible since the filtered damped sinusoids are still dampe
power in the last filter coefficients. This desirable property is &nusoids with altered amplitude and phase as can be seen
already stated typical of maximum-phase FIR filters. Eq. [3]. Applying an estimation method to the filtered signal
In summary, the main reasons for using maximum-phagg(n) results in estimates (calle, &,, @, andd,, respec-
FIR filters to suppress peaks in certain frequency regions dreely) that are related to the parameters of interest in th
the following. A FIR filter (in general) is powerful since thefollowing way:
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ER It is easy to check that Eq. [8] simplifies to
A = 1= y
|hby
o = & N—-1 K
e min > |y(n) — X x(n)[? 9]
= A Pk fic n=p k=1
fk - fk!

~ imag(hby) for white noise, with covariance matriR = oI, wherel
— _ t —1 5 . . . . . .
bk = ¢y~ tan realhb,) | ° [5]  denotes the identity matrix anef is the noise variance. The
NLLS fit in Eq. [9] is the one used in algorithms such as

These corrections are easily made after the estimation phasé’%?PRo a_nd AMARES. -
using the estimated valugs, andf, to find the b, vectors. he relation between the WNLLS fit in Eq. [8] and the
However, the estimation cannot be performed with standdpgPPosed NLLS fit of the filtered signal in Eq. [6] is easily seer
methods if prior knowledge concerning the amplitudes & the latter is slightly reformulated. Let

phases is to be taken into account. The filter influence on these

parameters has to be considered directly in the estimation hy-1 hy—z -+ hg o --- 0
procedure to yield correct estimates. Here we propose use of a 0 hy.y by -+ hy
NLLS fit where the filtered signal; (n) is fitted to the filtered : . .0
model function derived in Eq. [3]: 0 -+ 0 hyy hyso --- hg

[10]

N-M Koo denote the l — M + 1) X N FIR filter matrix. Using Eq.
min > ly;(n) — > hbx(n)|2 [6] [10], the following matrix multiplication replaces the convo-
A drat T n=o k=1 lution sum in Eq. [3]:

It is straightforward to correctly incorporate any kind of prior
knowledge into the above criterion. The minimization in Eq.
[6] has been numerically implemented for evaluation by mod- , . . ,
ifying the AMARES algorithm. The new algorithm is referred' "€ NLLS fit of the filtered signal in Eq. [6] can then be
to as AMARES in the following and briefly described underV!tten as

Quantification of'H Spectra.

Vi = Hy. [11]

The use of the NLLS fit in Eq. [6] can be motivated by K K
studying the ML estimator for the model in Eq. [1] based on a min (¥ — > X)*H*H(Y — D ). [12]
more general noise assumption. Let a otk i k=1 k=1
R = E[W*W] [71  When we compare the NLLS fit in Eq. [12] with Eq. [8] we see

that the modified NLLS fit is equal to the ML estimator if the
denote the covariance matrix of the circular Gaussian distriBIR filter is an ideal prewhitening filter:
uted noise, wherev = (w(0)---w(N — 1)), E is the

expected value operator, arddenotes the Hermitian conju- H*H = R L. [13]
gate. The ML estimator is then given by the weighted NLLS
(WNLLS) fit

The basic idea of the FIR filter technique is to regard the wate

signal as a part of the noise term and use the filter to whiten tt

) B « s miro “ B total noise term prior to the estimation phase. It is, howevel
ak,g:,f:, fk(y El XJ)*R7H(y 21 %), (8] important to note that the ML interpretation of the filtered
- - NLLS fit in Eq. [6] is valid only if the noise term is Gaussian

distributed. This is not the case when a non-Gaussian sign

where (such as the water signal) is included in the noise term. Fu
thermore, it is impossible to completely decorrelate the nois
y=1(y(0) - -y(N=1)T term and the metabolite signals since Eq. [13] cannot be solve
in general. The use of an approximate prewhitening FIR filte
and and the NLLS fit in Eq. [6] for quantification of thé4 spectra

is still expected to perform well and its good performance i
%= (x0) - -+ -x(N—=1))". illustrated under Numerical Examples.
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Filter Design -

1
i . o . . fu = 5 arg maxY(w,)|.
The objective of this section is to give guidelines on how to 2 wn

find a well-matched prewhitening filter that minimizes the filter

influence on the final parameter estimates. An automafibie widthf,, of the water peak (in Hz) at half-heiglst/ 2
scheme for finding the appropriate values of the filter desigives the following estimate of the water peak damping:
parameters is proposed. This scheme reduces the required user

interaction and ensures the reproducibility of the proposed ay = iy

method.

The design of maximum-phase filters is, as explained abO\ﬁ1
closely related to the design of minimum-phase filters. The
design of the latter filter type is often based on the approach
proposed in 21) where primarily a linear-phase FIR filter is
designed and transformed to a minimum-phase filter by spec-
tral factorization (i.e., reflecting all zeroes of the filter coeffiFinally an estimate of the noise standard deviation can b
cient polynomial inside the unit circle). The maximum-phas®@und from the last samples of the original data sequence if tt
filter is then found by reversing the order of the filter coeffisinusoidal components have been sufficiently damped out:
cients. The design of the initial linear-phase FIR filter is in our
case done with a constrained least-squares fit [using the algo- P
rithms proposed (and provided) bg2j] in which the filter P ) — m)* —p) —
orderM, normalized cutoff frequenc, stopband suppression 7 P-1 2 (yN=p) m* (YN = p) = m),
sup, and passband rippidnave to be specified [see, e.d.9)].

The linear-phase filter in Fig. 1 was designed using the dgherem, is the estimated mean,
scribed method and the following parameter values were used:
M = 60,f, = 0.05, sup= 10 "**(corresponds-70 dB), and

r = 0.01. Themaximum-phase filter in the same figure is
obtained by a spectral factorization of the linear-phase filter
and reordering of the filter coefficients. The spectral factoriza-

tion is done by rooting the filter coefficient polynomial andandP is chosen equal to a (small) number of samples contair
reflecting the zeroes inside the unit circle and thereafter recons mainly noise. Based on these estimates the followin

structing the impulse response of the filter. Using the abo : i e
design algorithm transforms the problem of finding a suitab\éa tomatic procedure to design the FIR filter is proposed.

prewhitening filter into choosing appropriate values of thgjter Design Scheme

design parameter$/, f., sup, andr. This choice can be ) ) o
automated using the following scheme based on some estil. Calculate the estimates of the noise standard deviation
mates obtained from the original signal. The filter desigif® dampingu,, frequencyf,, and amplituden,, of the water
scheme is based on the assumption that the water peak con§ig@k as described above.

mainly of one exponentially damped sinusoid, 2. To suppress the water signal below the noise leve
choose the suppression gup be equal to

e estimate of the water peak amplitude is given by

éw = Soaw.

p=1

1 P
m, =52 y(N-p),
p=1

yw( n) = awej ¢we(*aw+12wfw)nm,

o

) ] . SUR = 5=
and that we easily can find estimates&yf, «,, f., and the 24,

noise standard deviatioa. It is important to note that this

assumption is merely used to estimate the energy content &né determine starting values for the filter order (&= 50)

the frequency localization of the water peak and does n@fd passhand ripple (e.g.,= 5%).

impose restrictions on the actual shape of the water signal. 3. Correct the suppression as a function of the damping ¢
To obtain the estimates, the frequency domain magnitudetbe water signal:

the water peaks,, is calculated as )

B M B M(1 — e ®M)
s = maxY(w,)|, SUP= SUR| -t g-am| = SUR| T{ —gE |-
whereY(w,) denotes the discrete Fourier transform (DFT) ofhe reason for this correction is that the filter suppression |
y(n). The estimate of the water peak frequency is given by tiggdven for the magnitude response of the filter. The dampe
corresponding frequency: sinusoids in the water signal will be less suppressed due to tl
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weighting of the filter coefficients by the damping term (aQuantification Scheme

explained above). Tht1(1 — e *™)/(1 — e *) term ap- . o _

proximately compensates for this loss. 1. The noise standard dev[auon, water peak gmplltu_de, fre
4. Design a linear-phase filter (using the constrained L9'€ncy, and damping are estimated from the original signal :

algorithm above) with the lowest possible cutoff frequeficy described above.
that fulfills the following constraints: 2. Afrequency less or equal to the frequency of the metat

olite peak closest to the water peak is defined by the user.
_ 3. A suitable FIR filter is designed as described by the
|hf(0)| = sup, scheme above.

|m(&w)| = sup. 4. The signal is quantified (and filtered) using AMARES

The computational complexity of the above quantificatior
5. If this is not possible for scheme is an important issue. The parameter estimation in t
first step above introduces only a modest computational loa
The filter design using the automatic scheme is performed k
a constrained LS fit which has a computational complexity o
0(M?) floating-point opperations [whef&-) denotes the order
f magnitude] per iteration. The number of iterations is deper
ent on the filter specifications and cannot be known before

fo<fy,

wheref, is the frequency for the metabolite of interest that Iie%
closest o the water peak, increase the filter oldéyy 10 and hand. However, the algorithm is known to be efficient in the

restart from 3. that th ired ber of iterati is low. Th t
6. Shift the filter to be centered around the water peak [if t ghse hat the required number ot ierations 1S low. 1he spect:

: % ) actorization can be solved by finding the roots of the filter
water peak is not located at zero frequency (fe.# O)l: polynomial of lengthM. The standard solution to solve this

i i problem involves finding the eigenvalues of Mnx M matrix
h=hOo (1le7?mw. . .g i2mM-1) leading to a computational complexity 6{M?®) floating-point
operations. The filtering is included in the AMARESIgo-
rithm and thereby the computational burden is increased &

where® denotes elementwise multiplication. . . . .
7. Transform the linear-phase FIR filter to a minimum_@(NM) floating-point operations compared with the standare

phase filter by spectral factorization and reorder the fiIt@?MAR.ES a'9°T'thm- In summary the most compu'FatlonaIIy
coefficients to obtain the final maximum-phase filter. intensive parts in the quantification scheme are the filter desic

step and the spectral factorization. However, note that fc
The only parameter the user has to specify using this schemayplications such as spectroscopic imaging where a large nul
the approximate frequenc§,, of the peak of interest that liesber of spectra have to be processed and where the wal

closest to the water peak. contributions between spectra are similar it is sufficient tc
design the filter only once. This will decrease the computa
Quantification of'H Spectra tional burden significantly.

We want to point out that the newly developed methoc

The quantification ofH spectra is performed by the AM- AMARES; and the automated filter design scheme will be
ARES algorithm. The main difference between AMARES ang, ., rorated into a future release of the MRUI software pack
AMARES; is the cost function which is minimized. Wherea%lge 03, 24.

AMARES solves Eg. [9], AMARESminimizes

HSVD FOR SOLVENT SUPPRESSION

N-M M—-1 K

. h 2
. r(;nmf 212 hpy(n—=m+ M — 1) — > hbx(n)| HSVD is a subspace-based parameter estimation method
o Pk ki Tk n=0 m=0 k=1

which the noisy signal space is subdivided in a “signal” sub
space and a “noise” subspace using a SVD of a Hankel da
using the same NLLS solver as AMARES. The input to theatrix. The “signal” subspace is found by truncating the SVL
AMARES; algorithm thus consists of the unfiltered siggéh) of this matrix to rankM, the number of exponentials that
and the filter coefficients{,;} n-o.....m-1. The calculation of models the underlying signal. In general, HSVD provides ¢
the Jacobian in AMAREShas been adapted to take intanathematical fit of the data by a sum of exponentially dampe
account the changed cost function. AMARE#lows the im- complex-valued sinusoids. HSVD can therefore be used f
position of the same prior knowledge and parameter constraiafgoroximate the complicated features of the water resonanc
as AMARES. The final quantification scheme can be summiacluding its large tails. The fitted water region is subsequentl
rized as follows. subtracted from the original signal.
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FIG. 4. Water-suppressed proton spectrum from’a 2 X 2-cm volume in the white matter of the brain of a healthy volunteer, acquired with the STEAI
sequence (TR/TE/TM= 2000/20/30 ms) at 1.5 T. Note that no line broadening was applied to display the signals. Left: Magnitude spectrum of eddy c
corrected signal. Right: Magnitude spectrum of the same signal after FIR filtering.

The algorithm is computationally intensive since it requires NUMERICAL EXAMPLES
the computation of the SVD of theN(2 X N/2) matrix
demanding?(N?®) floating-point operations. HLSVD26) and In this section the proposed FIR filter-based suppressic
HLR (26) are fast versions of the HSVD algorithm in which théechnique is evaluated to determine the sensitivity of the fin
computation of a full SVD is circumvented. The gain in effiparameter estimates with respect to the choice of filter desic
ciency of these fast methods, however, decreases when phaeameters. The method is compared with the often-use
number of data points decreases and/or the model order iHB8VD method described above. We investigate the wate
creasesq6). HLSVD and HLR offer approximately the samesuppression abilities of both methods as a function of the nois
computational savings but HLR does not suffer from the prokevel and varying frequency distances between the metaboli
lems associated with the Lanczos proced#®).(Since the peaks and the water peak. A comparison of the computation
filter design scheme and the fast versions of HSVD are albmplexity of the methods is also included.
iterative methods, the differences in computation time areFirst we visually illustrate the water suppression abilities o
signal dependent and no exact statements can be made atimf-IR filter-based method by applying the method taran
the actual differences. However, the number of floating-poiaivo and anin vitro proton MRS signal. Thén vivo signal is
operations associated with the solvent suppression schena®n from a 2< 2 X 2-cm volume in the white matter of the
using HSVD and HLR are evaluated for a number of examplésain of a healthy volunteer. The signal was acquired with th

under Numerical Examples. STEAM sequence (TR/TE/TM= 2000/20/30 ms) at 1.5 T
In this paper we use the following scheme to process protfvision, Siemens) and eddy current corrected using the meth
spectra. described inZ7), which is based on earlier work described in

(28). Thein vitro proton MRS signal is acquired from a water
solution of 100 mM creatine (CHsinglet, CH singlet), 100
. - . mM acetate (CH singlet), 50 mM t-butyl alcohol (3X CHj;
2. HSVD is used to model the original signal by a sunvof singlet), and 10 mM TSP (X CH, singlet). A single-voxel

exponentially damped complex-valued sinusoids. . . 4 o
3. The peaks with frequencies belonging to this user-definS'«§lnal from a_sphencal phantom was acquired at 1.5 T (Visior
' § mens) using the STEAM sequence (TR/TE/BV20000/

water region are used to reconstruct the water peak, aﬁerwhéﬁg’o ms). The results are displayed in Figs. 4 and 5, respe

tsf;gnraelconstructed water signal is subtracted from the Orlglrllvely. To the left the magnitude spectra of the eddy curren

. . . s . corrected signals are shown. To the right the magnitude spect

4. The residual signal is quantified with AMARES. of the FIR-filtered signals are displayed. In the figures it can b
Note that the user is responsible for choosing the model ordseen that the water signals, including the tilted baselines di
As illustrated under Numerical Examples, this choice is moterting the nearby peaks, are perfectly removed by the filte
important than previously believed. obtained by the above filter design scheme.

1. The user specifies the model ordérand a cutoff fre-
qguencyf,, which defines a so-called water regionf, f].
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FIG. 5. Water-suppressed proton spectrum from a water solution of 100 mM creatine, 100 mM acetate, 50 mM t-butyl alcohol, and 10 mM T:
single-voxel signal from a spherical phantom was acquired at 1.5 T using the STEAM sequence (TRAROWM0/20/30 ms). Note that no line broadening
was applied to display the signals. Left: Magnitude spectrum of eddy current corrected signal. Right: Magnitude spectrum of the same signéltefteg FIR

Usually, the phased, real part of the spectrum is displayeddaviation was varied to simulate a number of SNRs. The SN
the frequency domain. Here we choose to visualize the mdgr each peak is measured in decibels (dB) and defined as
nitude of the spectra. The reason is twofold. First, applying a
FIR filter to a signal, results in slight phase and amplitude A ay,
changes of the signal, which are taken into account in the SNR peakk = 20 IO€<0> :
estimation phase. To display the signal in the usual way,

however, a phase correction of the filtered signal is needed. fnihe following examples the quality of the amplitude esti-

approximate phase correction can easily be calculated from fhgies is measured as the relative root mean squared er
filter phase response, but we prefer to display the magnit MSE) in percent

spectrum to circumvent the user-dependent phasing of the
signal. Second, by displaying the magnitude spectra, all infor-
mation present in the signal is visualized.

Since experimental signals contain errors introduced by fac-
tors such as unknown lineshape, data acquisition errors, and

eddy currents, all inevitably presentimvivo experiments, we is th ber of simulati & d h
use simulated signals to evaluate the performance of the prﬂﬁ_greL Is the number of simu a“?” runs a enotes t.e
timate ofa, obtained in simulation ruh. The RRMSE is

osed quantification scheme. The simulation signals are &
P g J mpared with the relative Cramdrao lower bound (CRB).

rived from the phantom signal described above in the followi . o X
e CRB is calculated from a model consisting of the five

way. The acquired phantom signal was quantified with HSV ) . , oo
using a high model orde = 100). Thewater signal was metabolite peaks without the water signal. The CRB indicate

subsequently reconstructed with all the exponentially damped

RRMSE peakk 2 100

sinusoids with frequencies betweer80 and 30 Hz and with TABLE 1

amplitudes above the estimated noise leGek= 7.5. The  Eqtimated Water Signal Parameters Used in the Reconstruction

parameters of the seven peaks used to reconstruct the water of the Water Peak

resonance are found in Table 1. Five metabolite peaks were

added as exponentially damped sinusoids with frequendy, (Hz) o (H2) bux (deg) aw (a.u.)

phase, and damping close to what was measured in the phan-

tom experiment. The amplitudes of the peaks were chosen tq’ >10 9088 15.01
pert : P _ p : 8 25 8.28 ~45.19 64.74

be approximately equal to the estimated TSP9 amplitude ang 14 10.51 —2.95 321.25

set equal for all peaks except for the two creatine peaks whose.18 12.45 179.97 1142.30

2:3 ratio was kept. In Table 2 the exact parameters used in thé€.17 4.24 —170.39 251.92

simulation examples are given. The added complex noise is3-09 %g g‘jﬁ 2;’;;3

white and circular Gaussian distributed. The noise standard”
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TABLE 2 band rippler is not critical either since this effect is taken into
Metabolite Parameters Used in the Simulated Signals account in the estimation phase. As expected, the results f
peak 1 are more sensitive to the filter design procedure than t

Peakk fi (H2) o (H2) ¢ (deg) & @U)  yesults for peaks further away from the water peak. The resul
1 61 7 0 oo  for the different filters show that a low suppression and cutof
2 118 7 0 30 frequency are desirable for low SNR, whereas a higher su
3 189 7 0 20 pression is needed to sufficiently suppress the water peak f
;‘ gﬁ ; 8 ;8 high SNR. These results are consistent with the theoretic

reasoning that the filter should be designed to decorrelate tl
noise term (including the water signal) with the signals o
interest as much as possible. A suitable level of the suppressi
the best possible accuracy of an estimate for any unbiagBdst therefore be used not to deteriorate the final estimate

estimator [see, e.9.29)]. The automatic filter design procedure matches the filter cha
acteristics with the water signal using the simple estimate

Simulation A: Influence of FIR Filter Parameters described above. The resulting filter has a suitable suppressi
on Estimation Precision level and cutoff frequency, leading to good results for all SNR:

The simulation signal described above is used here to e|r)1(_the example.

amine the mflgence of the filter Qe5|gn procedure on _the fmﬁ’mulation B: Influence of HSVD Parameters
parameter estimates as a function of the SNR. In Fig. 6 t €n Estimation Precision
RRMSE results obtained from 400 simulation runs are com-

pared with the CRB for the amplitude estimates of peak 1 andFor the HSVD method described above two parametelrs (
peak 4. The estimation results for peaks 2 to 5 are practicadlpdf,) have to be defined. The simulation signal is intended t
equal and therefore only the results of peak 4 are shown.dramine the sensitivity of the final parameter estimates to tr
addition to the automatic filter design procedure (cf. Filtezhoice of these user parameters. In Fig. 7 the RRMSE resu
Design) three different filters are chosen to investigate the filtebtained from 400 simulation runs for the HSVD method are
influence on the parameter estimates. The filters have the satisplayed. The HSVD method was applied using differen
order,M = 50, and passband ripple,= 0.01, butdifferent model orders M = 10, 12, 20, 30, and 40) and cutoff
values of suppression: 40, 60, and 80 dB with correspondifrgquencies {, = 15, 35, and 55 Hz). Only the results for
cutoff frequencies of 20, 30, and 40 Hz, respectively. Note that 35 Hz for each model order are shown since our simulatior
the influence of the filter ordévl is very modest. The order hasshowed that the choice of cutoff frequency has a minor influ
to be chosen high enough to fulfill the requirements for the stepce on the final parameter estimates. In our simulation exar

band suppression and cutoff frequency. Furthermore the pgsie-the water peak is exactly modeled by seven exponential

—— CRB CRB

I FIR-Aut
f c=20Hz sup=40 dB
fc=30Hz sup=60 dB
N fc=4OHz sup=80 dB

FIR-Aut

f =20Hz sup=40 dB
; f,=30Hz sup=60 dB
! fc=40Hz sup=80 dB

RRMSE Peak1 (%)
RRMSE Peakd4 (%)

o 5 10 15 20 25 30 0 5 10 15 20 25 30
SNR (dB) SNR (dB)

FIG. 6. CRB and RRMSE of amplitude estimates as a function of SNR obtained from 400 simulation runs using different FIR filters. Left: Peak 1. |
Peak 4.
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FIG. 7. CRB and RRMSE of amplitude estimates as a function of SNR obtained from 400 simulation runs using HSVD with different model orders.
Peak 1. Right: Peak 4.

damped sinusoids. This implies that the correct order of tseope of this work to look further into this subject since the
signal subspace is equal to 12 (7 sinusoids used to model thain purpose of this paper is to investigate the method bast
water signal and 5 to model the metabolite peaks). The resudts FIR filters. Since no standard way of obtaining the “opti-
show that the correct choice of the model order gives the besal” model order has been desribed in the literature, the HSV!
results for all SNRs. It is interesting to note the relatively largmethod is applied with the correct model ord&t & 12) in
variations in the final estimates for peak 1 resulting frorhe following.

under- or overestimation of the order of the signal subspace. A

low mod_el order (i.e.M = 10) gives 90‘_’0' results for low gjmjation C: Comparison of FIR Filter Method and HSVD
SNR vv_hlle the results are very poor for high SNR. Overmod- p1athod with Respect to Estimation Precision

eling (i.e., M > 12), and on theother hand, gives poor

estimates for low SNR. These results can be explained in dn this simulation example the accuracy of the FIR filter
similar way as was done for the filter method above. Due toethod using the automatic filter design scheme is compare
undermodeling the water signal is not completely removeuth the HSVD method using the correct model ordbt &
which deteriorates the accuracy of the estimates at high SNIR). Theinfluence on the estimation accuracy as a function o
This corresponds to the results obtained above using filtéhe position of the metabolite peaks is examined by modifyin
with too low suppression. On the other hand, overmodelirige basic experiment described above. The frequency of peal
leads to modeling parts of the noise by damped sinusoidsset to different values (61, 51, 41, 31, and 21 Hz) while th
Subtraction of these sinusoids from the original signal adfél®quencies of the other peaks are left unchanged. Four hu
new features to the signal. These artificially introduced sindred simulation runs with four different noise levels are used t
soids can have a relatively high amplitude when the bacfuantify the estimation errors. In Fig. 8 the RRMSE for peak:
ground noise is strong (low SNR) and influence the parameteand 4 are displayed as a function of the frequency for pee
estimates significantly. This can be compared with using dnThe results for peak 1 show that the estimates are degradi
unnecessarily high-suppression FIR filter as described abowten the metabolite peak is closer to the water peak. Tr
The simulation example is probably unrealistically simple fareason is that the distortions introduced in the frequency regic
high SNR in which case the HSVD method has no problem of the removed water signal by both methods correlate th
finding good estimates of the seven damped sinusoids usedaise term with nearby peaks. There is a difference betwee
the water signal reconstruction. However, the example shotie distortions introduced by the two methods. The FIR filte
that the model order selection for the HSVD method doesses a linear combination of the data samples to suppress |
influence the final parameter estimates and should be madser peak. The distortions are in this case introduced by tt
with some care. We want to point out that methods exist thiaevitable suppression of the previously white noise in the
make an automatic choice of model order based on differamater signal frequency region. The distortion introduced by th
information criteria and the values of the dominant singul&SVD method is due to the estimation errors of the paramete
values [see, e.g.8] and references therein]. It is beyond th@f each sinusoid used to reconstruct the water signal. TF
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FIG. 8. CRB and RRMSE of amplitude estimates as a function of the frequency of peak 1. The results are obtained from 400 simulations runs f
different SNRs using the FIR filter method and the HSVD method. Left: Peak 1. Right: Peak 4.

subtraction of the water signal reconstruction will not lead tofdtering procedure. This implies that in applications, such a
perfect cancellation of the water signal and thereby introduspectroscopic imaging in which the filter design has to b
new features distorting the spectrum. These distortions grerformed only once, the computational complexity of the FIF
relatively small for high SNR where the HSVD procedure findfiter method can be decreased by an order of magnitude. Tl
an excellent fit to the water signal but for realistic SNR levelgsults for the HLR and HSVD methods are given in Table 4
the distortions have an effect on the final estimates as we caomparing the results of these methods with the total compt
see in this example. In our example the HSVD method tational load of the FIR filter method shows that HLR requires
outperformed by the FIR filter method for lower SNRs whicli2 times more computation®N(= 1024) than the automatic
indicates that the distortions introduced by filtering are le$dR filter scheme (including the filter design steps), even for
important than the distortions introduced by the HSVD

method.
TABLE 3

Floating-Point Operations (X 10°) Required by the FIR Filter
Method for Water Removal®

Simulation D: Comparison of FIR Filter, HSVD, and
HLR Methods for Water Removal with Respect
to Computational Complexity

N M Const. LS Spe. Fac. Filtering Total

In this simulation example the computational complexity of
the FIR filter method is compared with that of the HSVD and®1? 30 013 041 013 0.66
HLR methods. The comparison is performed by calculating the %0 0-40 205 021 266
' 1parson IS pertor! y calcl 9 70 0.76 5.00 0.29 6.06
number of flops (floating-point operations) used in matlab Aut 1.01 205 0.21 3.27
when applying the water suppression techniques to the simu- 20 0.13 041 0.5 0.79
lation S|_gnal descrlb_ed above fof = 512, 1024, an®048 50 0.40 205 042 287
data points, respectively. 70 0.76 5.00 058 6.35
The results for the FIR filter method are given in Table 3. Aut 1.01 2.02 0.42 3.44
The cor_nputatlo_nal load is qI|V|ded into three parts: the _Ilne_za£048 30 013 041 051 1.05
phase filter design (constrained LS), the spectral factorization, 50 0.40 205 0.84 3.29
and the filtering operation. Spectral factorization is seen to be 70 0.76 5.01 1.16 6.93
Aut 1.01 2.02 0.84 3.87

the most computationally intensive step. The filter design pro-

cedure can be made more efficient by using alternative mini-
mum-phase filter design techniques that circumvent the spg,

 The FIR filter computations are divided into the design of the linear-phas
feer by constrained LS (Const. LS), spectral factorization (Spe. Fac.) and th

tral factorization [see, e.g.30) and references therein]. NOt€jtering operation (Filtering)M is the filter length and is the number of data

also the low computational load associated with the actyalints.



ACCURATE QUANTIFICATION OF *H SPECTRA 203

TABLE 4 procedure. The computational complexity of the propose
Floating-Point Operations (x 10°) Required by the HLR and scheme is low and at least one order of magnitude lower the
HSVD Methods for Water Removal® for the HSVD-based water removal method even if a fas
algorithm such as HLR is used. Note also that the FIR filte
N M HLR HSVD : .
method can be used for solvent suppression by itself followe
512 10 14.45 733.0 by parameter estimation by any existing estimation method. |
12 21.21 734.2 this case the corrections of the filter influence have to be dor
20 58.77 741.2 afterward and it is not possible to incorporate prior knowledg
30 137.2 755.6 of amplitude and/or phase relations.
1024 10 33.24 5697 The FIR filter method is compared numerically with the
12 40.95 5700 HSVD method for water peak removal in a number of simu-
20 120.4 5113 lation examples. The performance of the methods is examine
30 275.6 5740 : . .
as a function of the metabolite frequencies and the results shc
2048 10 79.16 45086 that the FIR filter method using the automatic design schern
12 92.95 45091 slightly outperforms the HSVD method in most cases. The us
20 244.1 45116 o : L
30 5442 45167 of the automatic filter design scheme leads to small estimatic

errors and ensures the reproducibility of the results. The HSV!
aM is the model order anll is the number of data points. method is seen to be sensitive to the choice of the model ord
and we want to point out that there is a need to investigat
automatic model order estimation techniques in this contex
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