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A scheme for accurate quantification of 1H spectra is presented.
he method uses maximum-phase finite impulse response (FIR)
lters for solvent suppression and an iterative nonlinear least-
quares (NLLS) algorithm for parameter estimation. The estima-
ion algorithm takes the filter influence on the metabolites of
nterest into account and can thereby correctly incorporate a large
ariety of prior knowledge into the estimation phase. The FIR
lter is designed in such a way that no distortion of the important

nitial samples is introduced. The FIR filter method is compared
umerically with the HSVD method for water signal removal in a
umber of examples. The results show that the FIR method, using
n automatic filter design scheme, slightly outperforms the HSVD
ethod in most cases. The good performance and ease of use of

he FIR filter method combined with its low computational com-
lexity motivate the use of the proposed method. © 1999 Academic Press

Key Words: magnetic resonance spectroscopy data quantifica-
ion; finite impulse response filter; solvent suppression; AMARES;
onlinear least squares.

INTRODUCTION

Accurate and efficient quantification of magnetic resona
pectroscopy (MRS) signals is the essential step prior t
onversion of the estimated signal parameters into bioche
uantities (concentration, pH). MRS signals are characte
y a low signal-to-noise ratio (SNR) and simple signal p
essing techniques are in general not adequate. There
umber of more advanced techniques based on a time do
odel function have been developed. The function often

o model theN measured data points is the sum of expon
ially damped complex sinusoids,

y~n! 5 ŷ~n! 1 w~n! 5 O
k51

K

ake
jfke~2ak1j2pfk!nDt 1 w~n!,

n 5 0, . . . , N 2 1, [1]

here j 5 =21, ak is the amplitude,f k the phase,a k the
amping, andf k the frequency of thekth sinusoid (k 5 1, . . . ,
); Dt is the sampling interval; andw is complex white nois
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ith a circular Gaussian distribution. The caret ony indicates
hat this quantity represents the model function rather tha
ctual measurements. The time domain estimation method
e divided into two classes. On the one hand, there ar
o-called black-box methods. Among this class of method
echniques based on Kumaresan and Tufts’ linear predi
LP) method (1) combined with the singular value decom
ition (SVD) (2). Kung’s state-space approach (3) combined
ith SVD and least squares (LS) [called HSVD (4)] is a more
fficient and more accurate alternative to the LP method
ircumvents the polynomial rooting and root selection. O
ariants of the state-space algorithms have been recently
osed in which some forms of prior knowledge can be in
orated (5–7), but the limitations to the imposition of pri
nowledge about model function parameters are inhere
his type of method. An alternative method which also av
olynomial rooting is the matrix pencil method as describe
8) and references therein. On the other hand, interactive m
ds exist that are iterative, require user involvement, and a

nclusion of prior knowledge. The algorithms minimize
ifference between the nonlinear model function and the
his approach leads to maximum likelihood (ML) param
stimates if the underlying assumptions concerning the m

unction and noise distribution are satisfied. VARPRO (9) and the
ore recent AMARES (10) are examples of this type of metho
In this paper we focus our attention on1H spectra. In th

bsence of water suppression techniques the signal con
ion of the water can have a magnitude that is 103 to 104 larger
han the magnitude of the metabolites of interest, which li
he broad “tails” of the water resonance. In practice care
esigned measurement sequences are used to suppre
ater signal prior to data acquisition. It is, however, imposs

o completely eliminate the water signal fromin vivo signals
ithout affecting the metabolites of interest over a relativ
ide frequency range. Therefore a water peak remains pr

n the spectra that cannot be described by an analytical
ion, mainly because of magnetic field inhomogeneity
ineshape distortions caused by suppression techniques.
o model function is available for the water signal, a met
1090-7807/99 $30.00
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190 SUNDIN ET AL.
.g., like AMARES, cannot be used without first removing
isturbing peak. Note that the problem is also present if
ses a frequency domain quantification method. In that
are has to be taken of the tilted baseline caused by
resence of the water resonance. As a consequence, irr

ive of the method used for the actual quantification of th
roton spectra, a preprocessing step is necessary to remo
nwanted water contribution. It is obvious that this preproc

ng step should influence the final parameter estimates o
etabolites of interest as little as possible. Furthermore
rocedure must be easy to use and have a low computa
omplexity since in applications such as spectroscopic ima
large number of spectra have to be processed.
Many preprocessing techniques have already been deve

ome of these methods estimate the water signal part and
ubtract it from the original signal. Various methods for obtain
he estimate of the water contribution have been proposed. In11),

low-pass convolution [finite impulse response (FIR) filter
sed to obtain the water peak estimate by suppressing a
igh-frequency contents (including the metabolite peaks) o
ignal. Variants on the method proposed in (11) have been deve
ped to alleviate distortions. An overview and discussion of t

ypes of methods can be found in (12). Another example in th
ame context is the HSVD method described in (13) [or the
imilar TLS-based method used in (14)] where HSVD is used t
odel the water region by a sum of damped complex expo

ials. A conceptually different approach is to suppress the w
art of the signal by applying filters or convolution techniq
irectly to the signal. Examples using that approach can be f
.g., in (15, 16). In (17) the baseline caused by the presence o
ater peak is approximated and removed from the spectrum

he frequency region around the center of the water peak is rep
y random noise. In (18) a technique based on SVD is presente
A general comment on these filter-related papers is the

f a satisfactory discussion of the design of the proposed
oreover, none of the published papers discuss the influ
f the used techniques on the parameter estimates o
etabolites of interest. The methods presented in the liter
re mostly evaluated based only on a visual inspection o
ltered signal. In this paper we take a different approach.
rst explain how to design a maximum-phase FIR filter wh
s ideal in the sense that, contrary to the procedures disc
n (12) and references therein, the filtered signal does
nclude any distorted samples and the loss of signal ener

inimized. To automate the procedure and to increase
eproducibility of the method, we propose an automatic fi
esign procedure based on statistical arguments related
oise prewhitening interpretation of the filter. In the param
stimation phase we explicitly take the effect of the filter
ccount, resulting in parameter estimates that lie close to

heoretically can be expected. We also discuss the influen
he filter design parameters on the estimates of the rel
etabolites and we compare the new method with the o
sed HSVD water removal method.
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The paper is organized as follows. In the next section the
lter theory is presented and desirable properties of the filte
ointed out. The filter influence on the parameters is studied

he choice of the iterative nonlinear least-squares (NLLS) a
ithm is motivated. The filter design aspects are covered an
utomatic filter design scheme is proposed. In the HSVD se

he HSVD method is briefly discussed and the water rem
rocedure described. The numerical examples section conta
xtensive numerical study of the parameter estimation accu
f the relevant metabolites with respect to the choice of bot
lter and HSVD parameters as well as a comparison o
omputational complexity of the methods. Finally, in the
ection, we formulate the main conclusions.

QUANTIFICATION OF 1H SPECTRA USING MAXIMUM-
PHASE FIR FILTERS FOR SOLVENT SUPPRESSION

IR Filter Theory

A FIR filter is defined by the convolution

yf ~n! 5 O
m50

M21

hmy~n 2 m!, n 5 0, . . . , N 2 1, [2]

here {hm} m50, . . . ,M21 are the constant (possibly complex) fi
oefficients [see, e.g., (19)]. A problem with the definition in Eq
2] is that the samplesy(n) for n , 0 are not available for filtering
his is normally solved by assuming that the signal is zero ou

he time window [i.e.,y(n) 5 0 for n , 0] or assuming a cycli
ignal [i.e.,y(n) 5 y(N 1 n) for n , 0]. Either of these assum
ions will lead to a distortion of the firstM 2 1samples of the filte
utput which therefore should be discarded. Let

xk~n! 5 ake
jfke~2ak1j2pfk!nDt, k 5 1, . . . , K,

enote the individual exponentially damped complex s
oids. Filtering the MRS signal model in Eq. [1] and discard
he firstM 2 1 samples yield

ŷf ~n! 5 O
m50

M21

hmŷ~n 2 m 1 M 2 1!

5 O
m50

M21

hm~ x1~n 2 m 1 M 2 1!

1 x2~n 2 m 1 M 2 1!

1 · · ·1 xK~n 2 m 1 M 2 1!)

5 h# b1x1~n! 1 h# b2x2~n! 1 · · ·1 h# bKxK~n!

5 O
k51

K

h# bkxk~n!, n 5 0, . . . , N 2 M, [3]
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191ACCURATE QUANTIFICATION OF 1H SPECTRA
here

h# 5
D ~hM21 · · ·h0!

nd

bk 5
D ~1e~2ak1j2pfk!Dt · · ·e~2ak1j2pfk!~M21!Dt! T.

rom Eq. [3] it is seen that the filtered NMR signal consist
he original damped sinusoids (same frequency and dam
ltered by a complex scalarh# bk. Thus the filter coefficient
hm} m50, . . . , M21 can be chosen to suppress certain peaks
akeuh# bku . 0) while not suppressing others (i.e., makeuh# bku
1). The filter (or convolution) methods are often believe

ave difficulties in removing the frequency domain “tail”
eaks without affecting peaks lying on this tail. This mis
erstanding comes from the well-established fact that
omain convolution is equal to frequency domain multipl

ion. It is, however, usually forgotten that this is not exa
rue unless the signal is cyclic or identically zero outside
ctual time window [see, e.g., (12, 20)]. The actual effect of th
ltering procedure in the frequency domain can be exam
y taking the Fourier transform (FT) of the filtered sig
odel in Eq. [3],

^$ ŷf ~n!% 5
D Ŷf ~ f ! 5 O

k51

K

h# bkXk~ f ! [4]

here Xk( f ) is the FT of the individual damped sinuso
so-called Lorentzian). It is thereby clear that the broad p
epresenting the exponentially damped sinusoids inclu
heir broad “tails,” can be suppressed individually [see
12)]. The same result cannot be obtained by simple opera
irectly in the frequency domain.
A suitable filter can be proposed from analyzing prope

f the filter frequency responseH( f ) defined by

H~ f ! 5
D h# g# ~ f !, f [ @20.5, 0.5#,

here f denotes the normalized frequency (sampling
uency5 1), andg# ( f ) is the Fourier vector:

g# ~ f ! 5
D ~1ej2pf · · ·ej2pf~M21!! T.

he frequency-dependent amplification of the filter is given by
agnitude responseuH( f )u. Second, the frequency-depend
hase delay is equal to the phase responsef( f ) defined as

f~ f ! 5 tan21S imag~H~ f !!

real~H~ f !! D ,
f
g)

.,

o

-
e
-

e

d
l

ks
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here real[ and imag[ denote the real and imaginary parts
, respectively. Finally, the frequency-dependent time d

in number of samples) is equivalent to the filter group d
d( f ):

Gd~ f ! 5
df~ f !

df
.

suitable filter type is found by first studying the propertie
he so-called linear-phase filter [see, e.g., (19)]. This type of
lter is characterized by its phase response which is a l
unction of the frequency. The linear dependency implies
he filter has a group delay that is equal to a constant
ndependent of the frequency). The constant group d
quals a pure time delay of the filtered signal. The time d

s equal to half the filter length [i.e., (M 2 1)/ 2 samples]. Thi
eans that (M 2 1)/ 2 information-carrying samples are l
hen the firstM 2 1 samples of the filtered signal a
iscarded. It is desirable to use a filter with a time delay e

o the filter length (i.e.,M 2 1 samples). Such a filter is
eneral not exactly realizable. Here we propose use
o-called maximum-phase filter which has the largest pos
roup delay for a given magnitude response [see, e.g.,19)].
his kind of filter is characterized by a phase response th
nonlinear function of the frequency, leading to a noncon
roup delay. A maximum-phase filter has by definition al
eroes of the filter coefficient polynomial outside the
ircle. A linear-phase filter can therefore easily be transfor
nto a maximum-phase filter by reflecting the zeroes of
lter coefficient polynomial outside the unit circle. Note t
his operation does not change the magnitude response
lter.
The properties of the described filter types will be clari

y a numerical example displayed in Fig. 1. A linear-ph
lter with filter order M 5 61 and the corresponding ma
um-phase filter are studied. In the top left, the magni

esponses of the filters (both magnitude responses are
re displayed. The phase responses of the filters are disp

n the top right. The linear-phase filter has a phase resp
hat varies linearly with frequency while the maximum-ph
lter has a phase response with a larger phase delay wh
arying nonlinearly with frequency. The bottom left displa
he group delay of the two filters. It can be seen that
inear-phase delays the signal exactly 30 samples for al
uencies. For the maximum-phase filter the time delay is c

o 60 in the passband and varies slightly as a function o
requency. Finally in the bottom right the filter coefficie
i.e., the impulse responses) are displayed. The figure c
hows that the linear-phase filter coefficients are symm
hile the maximum-phase filter has most of its energy in

ast coefficients. These are typical properties of the imp
esponses of the respective filters [see, e.g., (19)].

In Fig. 2 the filters described above are applied to a s
ated 1H MRS signal. The exact nature of the signal is
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192 SUNDIN ET AL.
cribed under Numerical Examples and for our purposes
t is sufficient to recognize the large water peak, located ar

Hz, that we wish to suppress and the five metabolite pea
nterest at higher frequencies. In Fig. 2a the magnitude s
rum of the signal and a normalized magnitude response o
lter are displayed. Figure 2b displays the magnitude spec
f the linear-phase filtered signal applied as in Eq. [2] with
iscarding the initialM 2 1 distorted samples. This exam

s interesting since it shows that the spectrum of the filt
ignal is nicely explained by the convolution theorem (i.e.,
esulting spectrum is exactly given by the multiplication of
ignal spectrum and the magnitude response of the filte
ig. 2c the magnitude spectrum of the filtered signal is

FIG. 1. Filter characteristics of linear-phase and maximum-phase FI
elay. Bottom right: Filter coefficients (Impulse response).
re
d
of
c-

he
m
t

d
e

In
-

layed after applying the linear-phase filter and discardin
f the distorted samples in the beginning of the signal.
emaining distorted samples give rise to the broad hump i
ater peak region. Note that the filtered spectrum can

onger be explained using the convolution theorem. In Fig
he magnitude spectrum of the linear-phase-filtered signal
ll distorted samples discarded is displayed. The spec
hows that there is a perfect suppression of the water
ncluding the large tails as was predicted by the above dis
ion and the result in Eq. [3]. In Fig. 2e the result fr
pplying the corresponding maximum-phase filter and disc

ng all the distorted samples is displayed. Also here the w
eak is perfectly removed. The difference between the two

lters. Top left: Magnitude response. Top right: Phase response. Bottom
R fi
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193ACCURATE QUANTIFICATION OF 1H SPECTRA
pectra shows the influence of the different group delays o
lters. The 30-sample group delay of the linear-phase
eads to a loss of 30 signal samples which contain an impo

FIG. 2. Illustration of distortions introduced by applying a FIR filter.
1th-order FIR filter. (b) Magnitude spectrum of linear-phase filtered sign
ignal discarding 30 distorted samples. (d) Magnitude spectrum of linea
aximum-phase filtered signal with all distorted samples discarded.
e
r
nt

art of the signal. The maximum-phase filter has a group d
lose to 60 for frequencies in the passband and therefore
s practically no loss of the initial high-amplitude samples

Magnitude spectrum of1H MRS signal and normalized magnitude respons
ithout discarding distorted samples. (c) Magnitude spectrum of linear-phase filtere

hase filtered signal with all distorted samples discarded. (e) Magnitudespectrum o
(a)
al w
r-p
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194 SUNDIN ET AL.
he signal. This can be seen from the higher metabolite
mplitudes in the maximum-phase-filtered spectrum comp
ith the linear-phase-filtered spectrum.
The importance of the large group delay of the maxim

hase filter can also be studied using the result derived i
3]. It is seen that theh# bk term gives a measure of the effect
he filter time delay when filtering damped sinusoids
iscarding all the distorted samples. In Fig. 3 the loss of S
s a function of the damping of the peaks is displayed fo

inear-phase filter and the maximum-phase filter used ab
he magnitude response of the linear-phase FIR filter is
layed on the left-hand side together with the values of

h# bku term as a function of the frequency for two differ
amping coefficients. The dampings and frequencies are

n normalized units (sampling frequency5 1). It is seen tha
or a damping of 0.01 (corresponding to 10 Hz for 1-k
ampling frequency) the SNR loss is close to 3 dB for
inear-phase filter. The corresponding figures for the m

um-phase filter are found on the right-hand side and it is
hat there is practically no involuntary suppression of
etabolite peaks except for some effects close to the stop

egion. The advantage of the use of maximum-phase filter
lso be understood in the following way. Note that thebk

ector is equal to the Fourier vectorg# ( f ) for sinusoids withou
amping (i.e.,a 5 0). The influence of the damping is that
agnitude response is weighted elementwise by the da
xponentials inbk: (1e2akDt . . . e2ak (M21)Dt)T. The influence o

he weighting will be minimized if the filter has most of
ower in the last filter coefficients. This desirable property
lready stated typical of maximum-phase FIR filters.
In summary, the main reasons for using maximum-p

IR filters to suppress peaks in certain frequency region
he following. A FIR filter (in general) is powerful since t

FIG. 3. Magnitude ofh# bk term as a function of normalized frequen
inear-phase FIR filter. Right: 61-tap, maximum-phase FIR filter.
ak
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lter influences the different peaks individually. Thereby i
ossible to suppress entire peaks, including the frequ
omain “tails,” while not influencing other peaks provided
istorted samples are discarded. The resulting signal is u

orted in the sense that the filtered signal is exactly desc
y the relation in Eq. [3]. Note that this property is
ependent on the type of filter used. The actual choice of

ype becomes important if you study the signal samples
hen theM 2 1 distorted samples of the filtered signal
iscarded. The high group delay of the maximum-phase
as seen to minimize this loss. The SNR gain compared
sing a linear-phase filter can be substantial.
As a final comment we want to point out that the propo

rocedure is exactly equivalent to using a minimum-ph
lter, filtering backward in time, and discarding the lastM
amples. This can be understood from the fact that the
um-phase filter has all its zeros of the filter coefficient p
omial inside the unit circle and can be obtained by rever

he order of the maximum-phase filter coefficients [see,
19)]. The common use of minimum-phase filters and
xisting design algorithm for such filters are the reason
hoosing to discuss minimum-phase filters under Filter De

arameter Estimation

From the filtered signal,yf (n), parameter estimates can
btained using any of the standard estimation methods. T
ossible since the filtered damped sinusoids are still dam
inusoids with altered amplitude and phase as can be se
q. [3]. Applying an estimation method to the filtered sig
f (n) results in estimates (calledãk, ã k, ṽ k, and f̃ k, respec
ively) that are related to the parameters of interest in
ollowing way:

(sampling frequency5 1) for different damping coefficientsa. Left: 61-tap
cy
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195ACCURATE QUANTIFICATION OF 1H SPECTRA
ak 5
ãk

uh# bku
,

ak 5 ãk,

fk 5 f̃k,

fk 5 f̃k 2 tan21S imag~h# bk!

real~h# bk!
D . [5]

hese corrections are easily made after the estimation pha
sing the estimated valuesã k and f̃ k to find the bk vectors
owever, the estimation cannot be performed with stan
ethods if prior knowledge concerning the amplitudes
hases is to be taken into account. The filter influence on
arameters has to be considered directly in the estim
rocedure to yield correct estimates. Here we propose us
LLS fit where the filtered signalyf (n) is fitted to the filtered
odel function derived in Eq. [3]:

min
ak,fk,ak, fk

O
n50

N2M

uyf ~n! 2 O
k51

K

h# bkxk~n!u 2. [6]

t is straightforward to correctly incorporate any kind of pr
nowledge into the above criterion. The minimization in
6] has been numerically implemented for evaluation by m
fying the AMARES algorithm. The new algorithm is referr
o as AMARESf in the following and briefly described und
uantification of1H Spectra.
The use of the NLLS fit in Eq. [6] can be motivated

tudying the ML estimator for the model in Eq. [1] based o
ore general noise assumption. Let

R 5 E@w# * w# # [7]

enote the covariance matrix of the circular Gaussian dis
ted noise, wherew# 5 (w(0) . . . w(N 2 1)), E is the
xpected value operator, andp denotes the Hermitian conj
ate. The ML estimator is then given by the weighted NL
WNLLS) fit

min
ak,fk,ak, fk

~ y# 2 O
k51

K

x# k!* R21~ y# 2 O
k51

K

x# k!, [8]

here

y# 5 ~ y~0! · · ·y~N 2 1!! T

nd

x# 5 ~ x ~0! · · ·x ~N 2 1!! T.
k k k
by

rd
r
se
on
f a

.
-

a

b-

t is easy to check that Eq. [8] simplifies to

min
ak,fk,ak, fk

O
n50

N21

uy~n! 2 O
k51

K

xk~n!u 2 [9]

or white noise, with covariance matrixR 5 s 2I , where I
enotes the identity matrix ands2 is the noise variance. Th
LLS fit in Eq. [9] is the one used in algorithms such
ARPRO and AMARES.
The relation between the WNLLS fit in Eq. [8] and t

roposed NLLS fit of the filtered signal in Eq. [6] is easily s
f the latter is slightly reformulated. Let

H 5 1
hM21 hM22 · · · h0 0 · · · 0

0 hM21 hM22 · · · h0
···

·
·
··

·
·

···
···

···
···

··· 0
0 · · · 0 hM21 hM22 · · · h0

2 [10]

enote the (N 2 M 1 1) 3 N FIR filter matrix. Using Eq
10], the following matrix multiplication replaces the conv
ution sum in Eq. [3]:

y# f 5 Hy# . [11]

he NLLS fit of the filtered signal in Eq. [6] can then
ritten as

min
ak,fk,ak, fk

~ y# 2 O
k51

K

x# k!* H* H~ y# 2 O
k51

K

x# k!. [12]

hen we compare the NLLS fit in Eq. [12] with Eq. [8] we s
hat the modified NLLS fit is equal to the ML estimator if t
IR filter is an ideal prewhitening filter:

H* H 5 R21. [13]

he basic idea of the FIR filter technique is to regard the w
ignal as a part of the noise term and use the filter to white
otal noise term prior to the estimation phase. It is, howe
mportant to note that the ML interpretation of the filte
LLS fit in Eq. [6] is valid only if the noise term is Gaussi
istributed. This is not the case when a non-Gaussian s
such as the water signal) is included in the noise term.
hermore, it is impossible to completely decorrelate the n
erm and the metabolite signals since Eq. [13] cannot be s
n general. The use of an approximate prewhitening FIR
nd the NLLS fit in Eq. [6] for quantification of the1H spectra

s still expected to perform well and its good performanc
llustrated under Numerical Examples.
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196 SUNDIN ET AL.
ilter Design

The objective of this section is to give guidelines on how
nd a well-matched prewhitening filter that minimizes the fi
nfluence on the final parameter estimates. An autom
cheme for finding the appropriate values of the filter de
arameters is proposed. This scheme reduces the require

nteraction and ensures the reproducibility of the propo
ethod.
The design of maximum-phase filters is, as explained ab

losely related to the design of minimum-phase filters.
esign of the latter filter type is often based on the appr
roposed in (21) where primarily a linear-phase FIR filter
esigned and transformed to a minimum-phase filter by s

ral factorization (i.e., reflecting all zeroes of the filter coe
ient polynomial inside the unit circle). The maximum-ph
lter is then found by reversing the order of the filter coe
ients. The design of the initial linear-phase FIR filter is in
ase done with a constrained least-squares fit [using the
ithms proposed (and provided) by (22)] in which the filter
rderM, normalized cutoff frequencyf c, stopband suppressi
up, and passband rippler have to be specified [see, e.g., (19)].
he linear-phase filter in Fig. 1 was designed using the
cribed method and the following parameter values were

5 60, f c 5 0.05, sup5 10270/20 (corresponds270 dB), and
5 0.01. Themaximum-phase filter in the same figure

btained by a spectral factorization of the linear-phase
nd reordering of the filter coefficients. The spectral facto

ion is done by rooting the filter coefficient polynomial a
eflecting the zeroes inside the unit circle and thereafter re
tructing the impulse response of the filter. Using the ab
esign algorithm transforms the problem of finding a suit
rewhitening filter into choosing appropriate values of
esign parametersM, f c, sup, andr . This choice can b
utomated using the following scheme based on some
ates obtained from the original signal. The filter des

cheme is based on the assumption that the water peak co
ainly of one exponentially damped sinusoid,

yw~n! 5 awejfwe~2aw1j2pfw!nDt,

nd that we easily can find estimates ofaw, aw, fw, and the
oise standard deviations. It is important to note that th
ssumption is merely used to estimate the energy conten

he frequency localization of the water peak and does
mpose restrictions on the actual shape of the water sign

To obtain the estimates, the frequency domain magnitu
he water peak,s0, is calculated as

s0 5 maxuY~vn!u,

hereY(v n) denotes the discrete Fourier transform (DFT
(n). The estimate of the water peak frequency is given by
orresponding frequency:
r
ic
n
ser
d

e,
e
h

c-

e

r
o-

e-
d:

r
-

n-
e
e
e

ti-
n
ists

nd
ot

of

f
e

f̃ w 5
1

2p
arg max

vn

uY~vn!u.

he width fwp of the water peak (in Hz) at half-heights0/ 2
ives the following estimate of the water peak damping:

ãw 5 pfwp.

he estimate of the water peak amplitude is given by

ãw 5 s0âw.

inally an estimate of the noise standard deviation ca
ound from the last samples of the original data sequence
inusoidal components have been sufficiently damped ou

s̃ 5 Î 1

P 2 1 O
p51

P

~ y~N 2 p! 2 my!* ~ y~N 2 p! 2 my!,

heremy is the estimated mean,

my 5
1

P O
p51

P

y~N 2 p!,

ndP is chosen equal to a (small) number of samples con
ng mainly noise. Based on these estimates the follow
utomatic procedure to design the FIR filter is proposed.

ilter Design Scheme

1. Calculate the estimates of the noise standard deviatis,
he dampingaw, frequencyfw, and amplitudeaw of the wate
eak as described above.
2. To suppress the water signal below the noise le

hoose the suppression sup0 to be equal to

sup0 5
s̃

2ãw

nd determine starting values for the filter order (e.g.,M 5 50)
nd passband ripple (e.g.,r 5 5%).
3. Correct the suppression as a function of the dampin

he water signal:

sup5 sup0F M

¥ m50
M21 e2ãwmG 5 sup0FM~1 2 e2ãwM!

1 2 e2ãw G .

he reason for this correction is that the filter suppressio
iven for the magnitude response of the filter. The dam
inusoids in the water signal will be less suppressed due
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197ACCURATE QUANTIFICATION OF 1H SPECTRA
eighting of the filter coefficients by the damping term
xplained above). TheM(1 2 e2âwM)/(1 2 e2âw) term ap-
roximately compensates for this loss.
4. Design a linear-phase filter (using the constrained

lgorithm above) with the lowest possible cutoff frequencf c

hat fulfills the following constraints:

uhf~0!u # sup,

uhf~ãw!u # sup.

5. If this is not possible for

fc , f1,

heref 1 is the frequency for the metabolite of interest that
losest to the water peak, increase the filter orderM by 10 and
estart from 3.

6. Shift the filter to be centered around the water peak [i
ater peak is not located at zero frequency (i.e.,f̃w Þ 0)]:

h# 5 h# J ~1e2j2p f̃w · · ·e2j2p f̃w~M21!!,

hereJ denotes elementwise multiplication.
7. Transform the linear-phase FIR filter to a minimu

hase filter by spectral factorization and reorder the
oefficients to obtain the final maximum-phase filter.

he only parameter the user has to specify using this sche
he approximate frequency,f 1, of the peak of interest that lie
losest to the water peak.

uantification of1H Spectra

The quantification of1H spectra is performed by the AM
RESf algorithm. The main difference between AMARES a
MARESf is the cost function which is minimized. Where
MARES solves Eq. [9], AMARESf minimizes

min
ak,fk,ak, fk

O
n50

N2M

u O
m50

M21

hmy~n 2 m 1 M 2 1! 2 O
k51

K

h# bkxk~n!u 2

sing the same NLLS solver as AMARES. The input to
MARESf algorithm thus consists of the unfiltered signaly(n)
nd the filter coefficients {hm} m50, . . . , M21. The calculation o

he Jacobian in AMARESf has been adapted to take i
ccount the changed cost function. AMARESf allows the im-
osition of the same prior knowledge and parameter const
s AMARES. The final quantification scheme can be sum
ized as follows.
S

s

e

-
r

is

e

ts
a-

uantification Scheme

1. The noise standard deviation, water peak amplitude
uency, and damping are estimated from the original sign
escribed above.
2. A frequency less or equal to the frequency of the me

lite peak closest to the water peak is defined by the use
3. A suitable FIR filter is designed as described by

cheme above.
4. The signal is quantified (and filtered) using AMAREf.

he computational complexity of the above quantifica
cheme is an important issue. The parameter estimation
rst step above introduces only a modest computational
he filter design using the automatic scheme is performe
constrained LS fit which has a computational complexit
(M 3) floating-point opperations [where2[ denotes the orde
f magnitude] per iteration. The number of iterations is de
ent on the filter specifications and cannot be known be
and. However, the algorithm is known to be efficient in
ense that the required number of iterations is low. The spe
actorization can be solved by finding the roots of the fi
olynomial of lengthM. The standard solution to solve th
roblem involves finding the eigenvalues of anM 3 M matrix

eading to a computational complexity of2(M 3) floating-point
perations. The filtering is included in the AMARESf algo-
ithm and thereby the computational burden is increase
(NM) floating-point operations compared with the stand
MARES algorithm. In summary the most computationa

ntensive parts in the quantification scheme are the filter de
tep and the spectral factorization. However, note tha
pplications such as spectroscopic imaging where a large
er of spectra have to be processed and where the
ontributions between spectra are similar it is sufficien
esign the filter only once. This will decrease the comp

ional burden significantly.
We want to point out that the newly developed met

MARESf and the automated filter design scheme will
ncorporated into a future release of the MRUI software p
ge (23, 24).

HSVD FOR SOLVENT SUPPRESSION

HSVD is a subspace-based parameter estimation meth
hich the noisy signal space is subdivided in a “signal” s
pace and a “noise” subspace using a SVD of a Hankel
atrix. The “signal” subspace is found by truncating the S
f this matrix to rankM, the number of exponentials th
odels the underlying signal. In general, HSVD provide
athematical fit of the data by a sum of exponentially dam

omplex-valued sinusoids. HSVD can therefore be use
pproximate the complicated features of the water reson

ncluding its large tails. The fitted water region is subseque
ubtracted from the original signal.
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198 SUNDIN ET AL.
The algorithm is computationally intensive since it requ
he computation of the SVD of the (N/ 2 3 N/ 2) matrix
emanding2(N3) floating-point operations. HLSVD (25) and
LR (26) are fast versions of the HSVD algorithm in which
omputation of a full SVD is circumvented. The gain in e
iency of these fast methods, however, decreases whe
umber of data points decreases and/or the model ord
reases (26). HLSVD and HLR offer approximately the sam
omputational savings but HLR does not suffer from the p
ems associated with the Lanczos procedure (26). Since the
lter design scheme and the fast versions of HSVD ar
terative methods, the differences in computation time
ignal dependent and no exact statements can be made
he actual differences. However, the number of floating-p
perations associated with the solvent suppression sch
sing HSVD and HLR are evaluated for a number of exam
nder Numerical Examples.
In this paper we use the following scheme to process pr

pectra.

1. The user specifies the model orderM and a cutoff fre
uencyf r, which defines a so-called water region [2f r, f r].
2. HSVD is used to model the original signal by a sum oM

xponentially damped complex-valued sinusoids.
3. The peaks with frequencies belonging to this user-de
ater region are used to reconstruct the water peak, after w

he reconstructed water signal is subtracted from the ori
ignal.
4. The residual signal is quantified with AMARES.

ote that the user is responsible for choosing the model o
s illustrated under Numerical Examples, this choice is m

mportant than previously believed.

FIG. 4. Water-suppressed proton spectrum from a 23 2 3 2-cm volume
equence (TR/TE/TM5 2000/20/30 ms) at 1.5 T. Note that no line broad
orrected signal. Right: Magnitude spectrum of the same signal after F
s

the
in-

-

ll
e
out
t
es
s

n

d
ich
al

er.
e

NUMERICAL EXAMPLES

In this section the proposed FIR filter-based suppres
echnique is evaluated to determine the sensitivity of the
arameter estimates with respect to the choice of filter de
arameters. The method is compared with the often-
SVD method described above. We investigate the w
uppression abilities of both methods as a function of the n
evel and varying frequency distances between the meta
eaks and the water peak. A comparison of the computa
omplexity of the methods is also included.
First we visually illustrate the water suppression abilitie

he FIR filter-based method by applying the method to ain
ivo and anin vitro proton MRS signal. Thein vivo signal is
aken from a 23 2 3 2-cm volume in the white matter of th
rain of a healthy volunteer. The signal was acquired with
TEAM sequence (TR/TE/TM5 2000/20/30 ms) at 1.5

Vision, Siemens) and eddy current corrected using the me
escribed in (27), which is based on earlier work described
28). The in vitro proton MRS signal is acquired from a wa
olution of 100 mM creatine (CH2 singlet, CH3 singlet), 100
M acetate (CH3 singlet), 50 mM t-butyl alcohol (33 CH3

inglet), and 10 mM TSP (33 CH3 singlet). A single-voxe
ignal from a spherical phantom was acquired at 1.5 T (Vis
iemens) using the STEAM sequence (TR/TE/TM5 20000/
0/30 ms). The results are displayed in Figs. 4 and 5, re

ively. To the left the magnitude spectra of the eddy cur
orrected signals are shown. To the right the magnitude sp
f the FIR-filtered signals are displayed. In the figures it ca
een that the water signals, including the tilted baselines
orting the nearby peaks, are perfectly removed by the fi
btained by the above filter design scheme.

the white matter of the brain of a healthy volunteer, acquired with the ST
ing was applied to display the signals. Left: Magnitude spectrum of edd
ltering.
in
en

IR fi



ed
t ma
n ng
F ud
c th
e wa
h d. A
a m t
fi itu
s f t
s nfo
m

fa
t , a
e e
u p
p e d
r in
w VD
u s
s pe
s h
a
p wa
r we
a nc
p ph
t en
b a
s ho
2 in t
s se
w da

d SNR
f as

I sti-
m error
(

w e
e
c ).
T five
m ates

TSP. A
s ing
w IR

0

1

199ACCURATE QUANTIFICATION OF 1H SPECTRA
Usually, the phased, real part of the spectrum is display
he frequency domain. Here we choose to visualize the
itude of the spectra. The reason is twofold. First, applyi
IR filter to a signal, results in slight phase and amplit
hanges of the signal, which are taken into account in
stimation phase. To display the signal in the usual
owever, a phase correction of the filtered signal is neede
pproximate phase correction can easily be calculated fro
lter phase response, but we prefer to display the magn
pectrum to circumvent the user-dependent phasing o
ignal. Second, by displaying the magnitude spectra, all i
ation present in the signal is visualized.
Since experimental signals contain errors introduced by

ors such as unknown lineshape, data acquisition errors
ddy currents, all inevitably present inin vivo experiments, w
se simulated signals to evaluate the performance of the
osed quantification scheme. The simulation signals ar
ived from the phantom signal described above in the follow
ay. The acquired phantom signal was quantified with HS
sing a high model order (M 5 100). Thewater signal wa
ubsequently reconstructed with all the exponentially dam
inusoids with frequencies between230 and 30 Hz and wit
mplitudes above the estimated noise levels̃ . 7.5. The
arameters of the seven peaks used to reconstruct the
esonance are found in Table 1. Five metabolite peaks
dded as exponentially damped sinusoids with freque
hase, and damping close to what was measured in the

om experiment. The amplitudes of the peaks were chos
e approximately equal to the estimated TSP9 amplitude
et equal for all peaks except for the two creatine peaks w
:3 ratio was kept. In Table 2 the exact parameters used
imulation examples are given. The added complex noi
hite and circular Gaussian distributed. The noise stan

FIG. 5. Water-suppressed proton spectrum from a water solution
ingle-voxel signal from a spherical phantom was acquired at 1.5 T usin
as applied to display the signals. Left: Magnitude spectrum of eddy cu
in
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eviation was varied to simulate a number of SNRs. The
or each peak is measured in decibels (dB) and defined

SNR peakk 5
D 20 logSak

s D .

n the following examples the quality of the amplitude e
ates is measured as the relative root mean squared

RRMSE) in percent,

RRMSE peakk 5
D 100Î1

L O
l51

L ~ak 2 ã k
l ! 2

ak
2 ,

hereL is the number of simulation runs andãk
l denotes th

stimate ofak obtained in simulation runl . The RRMSE is
ompared with the relative Crame´r–Rao lower bound (CRB
he CRB is calculated from a model consisting of the
etabolite peaks without the water signal. The CRB indic

00 mM creatine, 100 mM acetate, 50 mM t-butyl alcohol, and 10 mM
e STEAM sequence (TR/TE/TM5 20000/20/30 ms). Note that no line broaden
t corrected signal. Right: Magnitude spectrum of the same signal after Ffiltering.

TABLE 1
Estimated Water Signal Parameters Used in the Reconstruction

of the Water Peak

fwk (Hz) awk (Hz) fwk (deg) awk (a.u.)

28.48 5.10 290.88 15.01
25.25 8.28 245.19 64.74
22.16 10.51 22.95 321.25
20.18 12.45 179.97 1142.3
20.17 4.24 2170.39 251.92

3.09 6.79 36.77 201.1
6.31 4.00 81.11 12.30
of 1
g th
rren
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200 SUNDIN ET AL.
he best possible accuracy of an estimate for any unb
stimator [see, e.g., (29)].

imulation A: Influence of FIR Filter Parameters
on Estimation Precision

The simulation signal described above is used here to
mine the influence of the filter design procedure on the
arameter estimates as a function of the SNR. In Fig. 6
RMSE results obtained from 400 simulation runs are c
ared with the CRB for the amplitude estimates of peak 1
eak 4. The estimation results for peaks 2 to 5 are practi
qual and therefore only the results of peak 4 are show
ddition to the automatic filter design procedure (cf. F
esign) three different filters are chosen to investigate the

nfluence on the parameter estimates. The filters have the
rder,M 5 50, and passband ripple,r 5 0.01, butdifferent
alues of suppression: 40, 60, and 80 dB with correspon
utoff frequencies of 20, 30, and 40 Hz, respectively. Note
he influence of the filter orderM is very modest. The order h
o be chosen high enough to fulfill the requirements for the
and suppression and cutoff frequency. Furthermore the

TABLE 2
Metabolite Parameters Used in the Simulated Signals

Peakk fk (Hz) a k (Hz) f k (deg) ak (a.u.)

1 61 7 0 20
2 118 7 0 30
3 189 7 0 20
4 231 7 0 20
5 311 7 0 20

FIG. 6. CRB and RRMSE of amplitude estimates as a function of S
eak 4.
ed
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and rippler is not critical either since this effect is taken in
ccount in the estimation phase. As expected, the resul
eak 1 are more sensitive to the filter design procedure tha
esults for peaks further away from the water peak. The re
or the different filters show that a low suppression and cu
requency are desirable for low SNR, whereas a higher
ression is needed to sufficiently suppress the water pea
igh SNR. These results are consistent with the theore
easoning that the filter should be designed to decorrelat
oise term (including the water signal) with the signals

nterest as much as possible. A suitable level of the suppre
ust therefore be used not to deteriorate the final estim
he automatic filter design procedure matches the filter c
cteristics with the water signal using the simple estim
escribed above. The resulting filter has a suitable suppre

evel and cutoff frequency, leading to good results for all SN
n the example.

imulation B: Influence of HSVD Parameters
on Estimation Precision

For the HSVD method described above two parameterM
ndf r) have to be defined. The simulation signal is intende
xamine the sensitivity of the final parameter estimates t
hoice of these user parameters. In Fig. 7 the RRMSE re
btained from 400 simulation runs for the HSVD method
isplayed. The HSVD method was applied using diffe
odel orders (M 5 10, 12, 20, 30, and 40) and cut

requencies (f r 5 15, 35, and 55 Hz). Only the results forf r

35 Hz for each model order are shown since our simula
howed that the choice of cutoff frequency has a minor in
nce on the final parameter estimates. In our simulation e
le the water peak is exactly modeled by seven exponen

obtained from 400 simulation runs using different FIR filters. Left: Peak
NR
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201ACCURATE QUANTIFICATION OF 1H SPECTRA
amped sinusoids. This implies that the correct order o
ignal subspace is equal to 12 (7 sinusoids used to mod
ater signal and 5 to model the metabolite peaks). The re
how that the correct choice of the model order gives the
esults for all SNRs. It is interesting to note the relatively la
ariations in the final estimates for peak 1 resulting f
nder- or overestimation of the order of the signal subspa

ow model order (i.e.,M 5 10) gives good results for lo
NR while the results are very poor for high SNR. Overm
ling (i.e., M . 12), and on theother hand, gives poo
stimates for low SNR. These results can be explained
imilar way as was done for the filter method above. Du
ndermodeling the water signal is not completely remo
hich deteriorates the accuracy of the estimates at high
his corresponds to the results obtained above using fi
ith too low suppression. On the other hand, overmode

eads to modeling parts of the noise by damped sinus
ubtraction of these sinusoids from the original signal a
ew features to the signal. These artificially introduced s
oids can have a relatively high amplitude when the b
round noise is strong (low SNR) and influence the param
stimates significantly. This can be compared with usin
nnecessarily high-suppression FIR filter as described a
he simulation example is probably unrealistically simple
igh SNR in which case the HSVD method has no proble
nding good estimates of the seven damped sinusoids us
he water signal reconstruction. However, the example s
hat the model order selection for the HSVD method d
nfluence the final parameter estimates and should be
ith some care. We want to point out that methods exist
ake an automatic choice of model order based on diffe

nformation criteria and the values of the dominant sing
alues [see, e.g., (8) and references therein]. It is beyond

FIG. 7. CRB and RRMSE of amplitude estimates as a function of SN
eak 1. Right: Peak 4.
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cope of this work to look further into this subject since
ain purpose of this paper is to investigate the method b
n FIR filters. Since no standard way of obtaining the “o
al” model order has been desribed in the literature, the H
ethod is applied with the correct model order (M 5 12) in

he following.

imulation C: Comparison of FIR Filter Method and HSV
Method with Respect to Estimation Precision

In this simulation example the accuracy of the FIR fi
ethod using the automatic filter design scheme is comp
ith the HSVD method using the correct model order (M 5
2). Theinfluence on the estimation accuracy as a functio

he position of the metabolite peaks is examined by modif
he basic experiment described above. The frequency of p
s set to different values (61, 51, 41, 31, and 21 Hz) while
requencies of the other peaks are left unchanged. Four
red simulation runs with four different noise levels are use
uantify the estimation errors. In Fig. 8 the RRMSE for pe
and 4 are displayed as a function of the frequency for

. The results for peak 1 show that the estimates are degr
hen the metabolite peak is closer to the water peak.

eason is that the distortions introduced in the frequency re
f the removed water signal by both methods correlate
oise term with nearby peaks. There is a difference betw

he distortions introduced by the two methods. The FIR fi
ses a linear combination of the data samples to suppre
ater peak. The distortions are in this case introduced b

nevitable suppression of the previously white noise in
ater signal frequency region. The distortion introduced by
SVD method is due to the estimation errors of the param
f each sinusoid used to reconstruct the water signal.

obtained from 400 simulation runs using HSVD with different model ord
R
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202 SUNDIN ET AL.
ubtraction of the water signal reconstruction will not lead
erfect cancellation of the water signal and thereby intro
ew features distorting the spectrum. These distortions
elatively small for high SNR where the HSVD procedure fi
n excellent fit to the water signal but for realistic SNR le

he distortions have an effect on the final estimates as w
ee in this example. In our example the HSVD metho
utperformed by the FIR filter method for lower SNRs wh

ndicates that the distortions introduced by filtering are
mportant than the distortions introduced by the HS

ethod.

imulation D: Comparison of FIR Filter, HSVD, and
HLR Methods for Water Removal with Respect
to Computational Complexity

In this simulation example the computational complexit
he FIR filter method is compared with that of the HSVD
LR methods. The comparison is performed by calculating
umber of flops (floating-point operations) used in ma
hen applying the water suppression techniques to the s

ation signal described above forN 5 512, 1024, and2048
ata points, respectively.
The results for the FIR filter method are given in Table

he computational load is divided into three parts: the lin
hase filter design (constrained LS), the spectral factoriza
nd the filtering operation. Spectral factorization is seen t

he most computationally intensive step. The filter design
edure can be made more efficient by using alternative m
um-phase filter design techniques that circumvent the

ral factorization [see, e.g., (30) and references therein]. No
lso the low computational load associated with the a

FIG. 8. CRB and RRMSE of amplitude estimates as a function of t
ifferent SNRs using the FIR filter method and the HSVD method. Left
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.
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n,
e
-
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ltering procedure. This implies that in applications, such
pectroscopic imaging in which the filter design has to
erformed only once, the computational complexity of the
lter method can be decreased by an order of magnitude
esults for the HLR and HSVD methods are given in Tabl
omparing the results of these methods with the total com

ational load of the FIR filter method shows that HLR requ
2 times more computations (N 5 1024) than the automat
IR filter scheme (including the filter design steps), even f

frequency of peak 1. The results are obtained from 400 simulations ru
ak 1. Right: Peak 4.

TABLE 3
Floating-Point Operations (3 106) Required by the FIR Filter

Method for Water Removala

N M Const. LS Spe. Fac. Filtering Tot

512 30 0.13 0.41 0.13 0.6
50 0.40 2.05 0.21 2.6
70 0.76 5.00 0.29 6.0
Aut 1.01 2.05 0.21 3.27

1024 30 0.13 0.41 0.25 0.7
50 0.40 2.05 0.42 2.8
70 0.76 5.00 0.58 6.3
Aut 1.01 2.02 0.42 3.44

2048 30 0.13 0.41 0.51 1.0
50 0.40 2.05 0.84 3.2
70 0.76 5.01 1.16 6.9
Aut 1.01 2.02 0.84 3.87

a The FIR filter computations are divided into the design of the linear-p
lter by constrained LS (Const. LS), spectral factorization (Spe. Fac.) an
ltering operation (Filtering).M is the filter length andN is the number of dat
oints.
he
: Pe
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orrect choice of model order (M 5 12). When the correc
odel order is unknown a sufficiently high model order sho
e used since undermodeling could lead to loss of accu
see Simulation B). The computational load of HLR is 80 tim
N 5 1024) higher than that of the automatic FIR fil
cheme for a model order ofM 5 30. The computational loa
f HSVD is 1656 (N 5 1024) times higher than for the FI
lter method, even for a low model order (M 5 12).
In summary this simulation example shows that the

lter method, including the filter design step, is computat
lly always at least one order of magnitude more efficient

he fastest available algorithms based on the HSVD metho
ater removal. The difference is even higher if a high mo
rder is required to reconstruct the water signal or when a
umber of data points are used.

CONCLUSIONS

In this paper a scheme for accurate quantification o1H
pectra is presented. The method uses maximum-phas
lters for solvent suppression and an iterative NLLS algori
or parameter estimation (an adaption of AMARES). The
imation algorithm takes the filter influence on the metabo
f interest into account and thereby allows us to corre

ncorporate a large variety of prior knowledge into the esti
ion phase. The theory describing the FIR filters is prese
nd it is shown that using a maximum-phase filter mak
ossible to minimize the loss of signal energy when the

orted samples of the filtered MRS signal are discarded,
herefore the accuracy of the final parameter estimates i
roved. The design of the FIR filter is thoroughly discus
nd an automatic design procedure is proposed. The filt
rocedure can be interpreted as a prewhitening opera

hereby giving a statistical motivation for the used estima

TABLE 4
Floating-Point Operations (3 106) Required by the HLR and

HSVD Methods for Water Removala

N M HLR HSVD

512 10 14.45 733.0
12 21.21 734.2
20 58.77 741.2
30 137.2 755.6

1024 10 33.24 5697
12 40.95 5700
20 120.4 5113
30 275.6 5740

2048 10 79.16 45086
12 92.95 45091
20 244.1 45116
30 544.2 45167

a M is the model order andN is the number of data points.
d
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rocedure. The computational complexity of the propo
cheme is low and at least one order of magnitude lower
or the HSVD-based water removal method even if a
lgorithm such as HLR is used. Note also that the FIR fi
ethod can be used for solvent suppression by itself follo
y parameter estimation by any existing estimation metho

his case the corrections of the filter influence have to be
fterward and it is not possible to incorporate prior knowle
f amplitude and/or phase relations.
The FIR filter method is compared numerically with
SVD method for water peak removal in a number of si

ation examples. The performance of the methods is exam
s a function of the metabolite frequencies and the results

hat the FIR filter method using the automatic design sch
lightly outperforms the HSVD method in most cases. The
f the automatic filter design scheme leads to small estim
rrors and ensures the reproducibility of the results. The H
ethod is seen to be sensitive to the choice of the model
nd we want to point out that there is a need to invest
utomatic model order estimation techniques in this con
he good performance and ease of use of the FIR filter me
ombined with the low computational complexity motivate
se of the proposed method as an alternative to the often
SVD method.
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